skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krishnamurthy, Ipsita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Drosophila CG10915 is an uncharacterized protein coding gene with sequence similarity to human Cortactin Binding Protein 2 (CTTNBP2) and Cortactin Binding Protein 2 N-terminal-like (CTTNBP2NL). Here, we have named this gene Nausicaa (naus) and characterize it through a combination of quantitative live-cell total internal reflection fluorescence (TIRF) microscopy, electron microscopy, RNAi depletion, and genetics. We found that Naus co-localizes with F-actin and Cortactin in the lamellipodia of Drosophila S2R+ and D25c2 cells and this localization is lost following Cortactin or Arp2/3 depletion or by mutations that disrupt a conserved proline patch found in its mammalian homologs. Using Permeabilization Activated Reduction in Fluorescence (PARF) and Fluorescence Recovery after Photo-bleaching (FRAP), we find that depletion of Cortactin alters Naus dynamics leading to a decrease in its half-life. Furthermore, we discovered that Naus depletion in S2R+ cells led to a decrease in actin retrograde flow and a lamellipodia characterized by long, unbranched filaments. We demonstrate that these alterations to the dynamics and underlying actin architecture also affect D25c2 cell migration and decrease arborization in Drosophila neurons. We present the hypothesis that Naus functions to slow Cortactin's disassociation from Arp2/3 nucleated branch junctions, thereby increasing both branch nucleation and junction stability. 
    more » « less